How to find a hidden clique

Brendan Ames

Institute for Mathematics and its Applications
University of Minnesota

Clemson University
Thursday, April 11, 2013
Outline/Contributions

• Brief review of sparse optimization/recovery.

• Present a new convex relaxation for the maximum clique problem based on sparse optimization techniques.

• Explain how this relaxation approach can be extended to graph clustering.

• Give a probabilistic model for “clusterable” data and graphs, and theoretical guarantees of recovery of the clusters using our relaxation.

• Experimental results and open problems.

• Joint work with Stephen Vavasis and Ting-Kei Pong, University of Waterloo.
Classical Signal Compression

- Measure signal $\mathbf{x} \in \mathbb{R}^n$, which is sparse in some basis.
- Compress signal as $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{R}^m$, where $m << n$.
- Measuring the full signal \mathbf{x} may be costly if n is very large.
Compressed Sensing

- **Compressed Sensing**: measure a sparse signal \(x \in \mathbb{R}^n \) directly using \(m \) linear observations:

\[
\begin{align*}
\text{(obs)} & \quad = \quad \text{(sensing matrix)} \\
y & \quad A \\
(\text{signal}) & \quad x
\end{align*}
\]

- Never record a full copy of \(x \)!
- To recover \(x \) from observed \(y \) solve \(\min \{ \| x \|_0 : A x = y \} \)
 where \(\| x \|_0 := \# \{ i : x_i \neq 0 \} \).
- Problem is NP-hard.
\[\ell_1 \text{-norm relaxation} \]

- Relax by replacing \(\|x\|_0 \) with the \(\ell_1 \) norm:

\[\|x\|_0 \Rightarrow \|x\|_1 = \sum |x_i| \]

- \(\| \cdot \|_1 \) is the convex envelope of \(\| \cdot \|_0 \) on \(B_\infty = \{x : |x_i| \leq 1\} \)
ℓ_1-norm relaxation

- Relax by replacing $\|x\|_0$ with the ℓ_1 norm:

$$\|x\|_0 \Rightarrow \|x\|_1 = \sum |x_i|$$

- $\| \cdot \|_1$ is the convex envelope of $\| \cdot \|_0$ on $B_\infty = \{x : |x_i| \leq 1\}$
Sparse recovery

- **Donoho 2006, Candès, Romberg, Tao 2006**: If A and y are given by sufficiently many ($m = \Omega(s \log(n/s))$) random observations of sparse vector x_0 then

 $$x_0 = \arg \min \{ \|x\|_0 : Ax = y \} = \arg \min \{ \|x\|_1 : Ax = y \}$$

- **Idea**: recovery is guaranteed if A samples roughly same amount of information from each element of x_0.
• **Affine rank minimization problem**: find minimum rank solution of a given set of linear equations:

\[
\min \{ \text{rank}(X) : \mathcal{A}(X) = b \}.
\]

• Well-known to be NP-hard.

• **Fazel 2002**: Relax using the nuclear norm \(\|X\|_* \)

\[
\text{rank}(X) = \|\sigma(X)\|_0 \Rightarrow \|X\|_* = \sum_i \sigma_i(X)
\]
Matrix completion/Netflix Problem

- **Netflix problem**: matrix M contains incomplete user movie ratings.
 - M is low rank: few factors influence user prefs

```
Users   | Movies
-------|-------
Alice  | 3     | 4     | 2     | 2
Bob    | 1     | 3     | 3     |   
Charlie| 1     | 4     | 3     |   
```

- Try to recover the full-matrix M of user ratings from submitted ratings:

$$
\min \{ \text{rank } X : X_{ij} = M_{ij} \text{ if user } i \text{ has rated movie } j \}$$
Geometry of nuclear norm relaxation

- Relax by replacing $\text{rank}(X)$ with $\|X\|_* = \sum \sigma_i(X)$

- $\| \cdot \|_*$ is the convex envelope of rank on $B = \{ X : \|X\| \leq 1 \}$.

$X = \begin{bmatrix} x & y \\ y & z \end{bmatrix}$ in \mathbb{R}^{2x2}

$\text{rank}(X) = 1$

$|x + z| = 1$
Geometry of nuclear norm relaxation

- Relax by replacing $\text{rank}(X)$ with $\|X\|_* = \sum \sigma_i(X)$
- $\| \cdot \|_*$ is the convex envelope of rank on $B = \{X : \|X\| \leq 1\}$.

\[X = \begin{bmatrix} x & y \\ y & z \end{bmatrix} \text{ in } \mathbb{R}^{2 \times 2}\]

$\text{rank}(X) = 1$

$|x + z| = 1$
Guaranteed low-rank recovery

- Recht, Fazel, Parrilo 2007, Candés and Recht 2008:
 If \mathcal{A} and \mathbf{b} are given by sufficiently many ($m = \Omega(rn \log n)$) random observations of a low-rank matrix then

$$\arg\min\{\text{rank}(X) : \mathcal{A}(X) = \mathbf{b}\} = \arg\min\{\|X\|_* : \mathcal{A}(X) = \mathbf{b}\}$$

$$X = \begin{bmatrix} x & y \\ y & z \end{bmatrix} \text{ in } \mathbb{R}^{2 \times 2}$$

$\text{rank}(X) = 1$

$|x + z| = 1$
Clustering

- **Clustering**: Want to partition a given data set so that items in each cluster are similar to each other and items not in the same cluster are dissimilar.

- Fundamental problem in statistics and machine learning:
 - applications include pattern recognition, computational biology, image processing/computer vision, network analysis.

- **Intractable** in general: usually modeled as some NP-hard problem.

- Consider two model problems: **clique** and **graph partitioning**.
Graph clustering

- The Similarity Graph: we may represent a data set as a graph where items correspond to nodes and edges indicate similarity.

- To cluster the data set into \(k \) clusters, we want to divide the graph into \(k \) subgraphs representing these clusters.

- E.g. partition the similarity graph into \(k \) dense subgraphs:
 - Dense = large average degree
Example: Communities in Social Networks

- Nodes = users
- Edges = “friendship”.
- Densely connected groups = communities
Cliques of a graph

- Given graph $G = (V, E)$, a **clique** of G is a pairwise adjacent subset of V.

- $C \subseteq V$ is a clique of G if $uv \in E$ for all $u, v \in C$.

- The subgraph $G(C)$ induced by C is complete.
Cliques of a graph

- Given graph $G = (V, E)$, a clique of G is a pairwise adjacent subset of V.

- $C \subseteq V$ is a clique of G if $uv \in E$ for all $u, v \in C$.

- The subgraph $G(C)$ induced by C is complete.
The Maximum Clique problem

- **Optimization version**: Find the size of the largest clique of G; size of the largest clique is the **clique number** $\omega(G)$.

- **Decision version**: Given graph G, integer r: does G contain a clique of cardinality at least r?

- **Complexity**: NP-complete, cannot approximate $\omega(G)$ within a ratio of $N^{1-\epsilon}$ for any $\epsilon > 0$, where $N = |V|$.

- **Many applications**: communication, power, and social networks, mathematical biology, cryptography.
Matrix representation of cliques

• Characteristic vector of C: vector $\mathbf{v} \in \{0, 1\}^V$ with
 \[
 v_i = \begin{cases}
 1, & \text{if } i \in C \\
 0, & \text{otherwise}
 \end{cases}
 \]

• If C is a clique with characteristic vector \mathbf{v} let $X = \mathbf{v}\mathbf{v}^T$.

• Nonzero entries of X form a $|C| \times |C|$ all-ones block in $A_G + I$.
Max Clique as rank minimization

- \(G \) has a \(r \)-clique if and only if there exists rank-one symmetric binary matrix \(X \) such that

\[
\sum \sum X_{ij} \geq r^2 \\
X_{ij} = 0 \quad \forall \ ij \notin E, \ i \neq j.
\]

- Otherwise \(\omega(G) < r \).

- Max Clique is equivalent to the rank minimization problem:

\[
\min_{X \in \{0,1\}^V \times V} \left\{ \text{rank}(X) : e^T X e \geq r^2, X_{ij} = 0 \text{ if (}i,j\text{) } \in \tilde{E} \right\}
\]

where \(\tilde{E} = V \times V - \{E \cup \{(u,u): u \in V\}\} \).
Nuclear norm relaxation of Clique

• We have the rank minimization problem:

\[
\min_{X \in \{0, 1\}^V \times \hat{\mathcal{V}}} \left\{ \text{rank}(X) : e^T X e \geq r^2, X_{ij} = 0 \text{ if } (i, j) \in \tilde{E} \right\}
\]

• Relax by replacing rank with the nuclear norm and ignoring the binary and symmetry constraints:

\[
\min_{\|X\|_*} \left\{ e^T X e \geq r^2, X_{ij} = 0 \text{ if } (i, j) \in \tilde{E} \right\} \quad \text{(NNR)}
\]

• When does the solution of the relaxation coincide with that of the rank minimization problem?
The planted case

Construction:

- Add all potential edges between nodes in vertex set V^* of size r.
The planted case

Construction:

- Add all potential edges between nodes in vertex set V^* of size r.
- Each remaining potential edge is added to E independently with probability p.
Construction:

- Add all potential edges between nodes in vertex set V^* of size r.

- Each remaining potential edge is added to E independently with probability p.

- By construction, V^* is a clique of G (called a planted or hidden clique).
The planted case

Construction:

- Add all potential edges between nodes in vertex set V^* of size r.
- Each remaining potential edge is added to E independently with probability p.
- By construction, V^* is a clique of G (called a planted or hidden clique).
The planted case

Construction:

- Add all potential edges between nodes in vertex set \(V^* \) of size \(r \).
- Each remaining potential edge is added to \(E \) independently with probability \(p \).
- By construction, \(V^* \) is a clique of \(G \) (called a planted or hidden clique).
The planted case

Construction:

- Add all potential edges between nodes in vertex set V^* of size r.
- Each remaining potential edge is added to E independently with probability p.
- By construction, V^* is a clique of G (called a planted or hidden clique).
Recovery guarantee in the planted case

Theorem (Ames-Vavasis 2011)

There exists scalar \(c > 0 \) (depending only on \(p \)) such that if

\[
r \geq c \sqrt{N}
\]

then

- \(V^* \) is the unique maximum clique of \(G \), and
- \(X^* = vv^T \) is the unique optimal solution of \((\text{NNR})\)

with probability tending exponentially to 1 as \(N \to \infty \).
The Weighted Similarity Graph

- Suppose we are given a set of data and affinity function f indicating similarity between any two items in the data set.
- We can model the data using the weighted similarity graph $G_S = (V, E, W)$ as follows:
 - Each item in the data set is represented by a node in V.
 - We add an edge between each pair of two nodes i, j with edge weight $W_{ij} = f(i, j)$.
 - W_{ij} is large if i and j are highly similar.
Example: Communities in Social Networks

- Nodes = users
- Edges = “friendship”.
- Densely connected groups = communities
Example: Clustered Euclidean data

- Suppose each data point in the ith cluster C_i is placed uniformly at random in a ball centered at $c_i \in \mathbb{R}^d$.

- If the centers are sufficiently far apart, then the distance within clusters will be small compared to the distance between clusters.

- Choose $W_{ij} = \exp(-\|x^i - x^j\|^2)$.

![Graphical representation of clustered data](image)

![Grid representation of clusters](image)
Example: Clustered Euclidean data

- Suppose each data point in the ith cluster C_i is placed uniformly at random in a ball centered at $c_i \in \mathbb{R}^d$.
- If the centers are sufficiently far apart, then the distance within clusters will be small compared to the distance between clusters.
- Choose $W_{ij} = \exp(-\|x^i - x^j\|^2)$.
The Densest k-Disjoint Clique Problem

- To cluster the data we want to partition the graph into cliques whose adjacency matrices have heavy support.

- A k-disjoint-clique subgraph of a graph G is a subgraph of G whose set of nodes consists of k disjoint cliques.

- Densest k-disjoint-clique problem (KDC): find a k-disjoint-clique subgraph such that the sum of the densities of the k complete subgraphs induced by the cliques is maximized.

 - Density of a complete subgraph induced by C:

 $$d(C) = \frac{1}{|C|} \sum_{i \in C} \sum_{j \in C} W_{ij} = \frac{\mathbf{v}^T \mathbf{W} \mathbf{v}}{\mathbf{v}^T \mathbf{v}}$$

 where \mathbf{v} is the characteristic vector of C.

Lifting procedure for KDC

- Let \(\{C_1, \ldots, C_k\} \) define a \(k \)-disjoint-clique subgraph with corresponding characteristic vectors \(\{v_1, v_2, \ldots, v_k\} \)

- We lift the \(k \) characteristic vectors \(\{v_1, v_2, \ldots, v_k\} \) to the rank \(k \) matrix variable \(X \):

 \[
 X = \sum v_i v_i^T \frac{1}{\|v_i\|^2}.
 \]

- \(X \) has trace exactly equal to \(k \) and satisfies

 \[
 \text{Tr}(WX) = \sum v_i^T W v_i \frac{1}{\|v_i\|^2}
 \]
Relaxation to SDP

- Ignoring rank constraint and relaxing combinatorial constraints on X gives the semidefinite program:

$$\begin{array}{ll}
\max & \text{Tr}(WX) \\
\text{st} & Xe \leq e \\
& \text{Tr}(X) = k \\
& X_{ij} \geq 0 \quad \forall \ i, j \in V \\
& X \succeq 0.
\end{array}$$

- $\text{Tr}(X) = \|X\|_* = k$ acts a surrogate for $\text{rank}(X) = k$
The Planted cluster model

Randomly generate weights $W \in [0, 1]^{N \times N}$ according to the following model:

- Start with clusters C_1, \ldots, C_k of sizes r_1, \ldots, r_k.
- Sample entries of $W(C_i, C_j)$ i.i.d. from probability distribution Ω_1 with mean α.
- Sample remaining entries of W i.i.d. from distribution Ω_2 with mean $\beta << \alpha$.
Guaranteed recovery

- Let $X^* = \sum_{i=1}^{k} \frac{v_i v_i^T}{r_i}$ be the feasible solution corresponding the planted clusters where v_i is the characteristic vector of C_i for all i.

Theorem (Ames 2012)

There exist scalars $c_1, c_2, c_3 > 0$ such that if

$$c_1 \sqrt{N} + c_2 \sqrt{kr_{k+1}} + c_3 r_{k+1} \leq (\alpha + \alpha \delta_{0,r_{k+1}} - 2\beta)\hat{r},$$

where $\hat{r} = \min\{r_1, r_2, \ldots, r_k\}$, then

- X^* is the unique optimal solution of SDP relaxation, and
- $\{C_1, \ldots, C_k\}$ is the unique densest k-disjoint-clique subgraph with probability tending exponentially to 1 as $\hat{r} \to \infty$.
Rehnquist Supreme Court

- Data set is the set of U.S. Supreme Court Justices (serving from 1994-95 to 2003-04).

- First consider by Hubert and Steinley 2005.

- Assign edge-weights corresponding to fraction of decisions on which Justices agreed:

<table>
<thead>
<tr>
<th></th>
<th>St</th>
<th>Br</th>
<th>Gi</th>
<th>So</th>
<th>Oc</th>
<th>Ke</th>
<th>Re</th>
<th>Sc</th>
<th>Th</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 St</td>
<td>1</td>
<td>0.62</td>
<td>0.66</td>
<td>0.63</td>
<td>0.33</td>
<td>0.36</td>
<td>0.25</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>2 Br</td>
<td>0.62</td>
<td>1</td>
<td>0.72</td>
<td>0.71</td>
<td>0.55</td>
<td>0.47</td>
<td>0.43</td>
<td>0.25</td>
<td>0.24</td>
</tr>
<tr>
<td>3 Gi</td>
<td>0.66</td>
<td>0.72</td>
<td>1</td>
<td>0.78</td>
<td>0.47</td>
<td>0.49</td>
<td>0.43</td>
<td>0.28</td>
<td>0.26</td>
</tr>
<tr>
<td>4 So</td>
<td>0.63</td>
<td>0.71</td>
<td>0.78</td>
<td>1</td>
<td>0.55</td>
<td>0.5</td>
<td>0.44</td>
<td>0.31</td>
<td>0.29</td>
</tr>
<tr>
<td>5 Oc</td>
<td>0.33</td>
<td>0.55</td>
<td>0.47</td>
<td>0.55</td>
<td>1</td>
<td>0.67</td>
<td>0.71</td>
<td>0.54</td>
<td>0.54</td>
</tr>
<tr>
<td>6 Ke</td>
<td>0.36</td>
<td>0.47</td>
<td>0.49</td>
<td>0.5</td>
<td>0.67</td>
<td>1</td>
<td>0.77</td>
<td>0.58</td>
<td>0.59</td>
</tr>
<tr>
<td>7 Re</td>
<td>0.25</td>
<td>0.43</td>
<td>0.43</td>
<td>0.44</td>
<td>0.71</td>
<td>0.77</td>
<td>1</td>
<td>0.66</td>
<td>0.68</td>
</tr>
<tr>
<td>8 Sc</td>
<td>0.14</td>
<td>0.25</td>
<td>0.28</td>
<td>0.31</td>
<td>0.54</td>
<td>0.58</td>
<td>0.66</td>
<td>1</td>
<td>0.79</td>
</tr>
<tr>
<td>9 Th</td>
<td>0.15</td>
<td>0.24</td>
<td>0.26</td>
<td>0.29</td>
<td>0.54</td>
<td>0.59</td>
<td>0.68</td>
<td>0.79</td>
<td>1</td>
</tr>
</tbody>
</table>
Solve KDC with $k = 2$ to get the following partition of the Supreme court:

<table>
<thead>
<tr>
<th>1: “Liberal”</th>
<th>2: “Conservative”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevens (St)</td>
<td>O’Connor (Oc)</td>
</tr>
<tr>
<td>Breyer (Br)</td>
<td>Kennedy (Ke)</td>
</tr>
<tr>
<td>Ginsberg (Gi)</td>
<td>Rehnquist (Re)</td>
</tr>
<tr>
<td>Souter (So)</td>
<td>Scalia (Sc)</td>
</tr>
<tr>
<td></td>
<td>Thomas (Th)</td>
</tr>
</tbody>
</table>
Algorithm is sensitive to choice of k.

Solve with $k = 3$:

<table>
<thead>
<tr>
<th>1: “Most Conservative”</th>
<th>2: “Moderate Conservative”</th>
<th>3: ”Liberal”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thomas (Th)</td>
<td>O’Connor (Oc)</td>
<td>Stevens (St)</td>
</tr>
<tr>
<td>Scalia (Sc)</td>
<td>Kennedy (Ke)</td>
<td>Breyer (Br)</td>
</tr>
<tr>
<td></td>
<td>Rehnquist (Re)</td>
<td>Ginsberg (Gi)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Souter (So)</td>
</tr>
</tbody>
</table>
The NCAA Football Network

- First considered in *Girvan and Newman 2001*.
- Nodes are the 115 Division I football teams.
- Teams are deemed adjacent if they played at least one game against each other in the 2000 season.
- Games are typically scheduled based on membership within athletic conferences and geography.
- Should display community structure based on membership in conferences.
The NCAA Football Network, pt 2

- The node-node adjacency matrix for the football network.
The NCAA Football Network, pt 3

- The adjacency matrix with rows/cols reordered according to conferences.
The NCAA Football Network, pt 4

- Solve instance of KDC with $W = A$, $k = 15$.
 - Use ADMM to solve the SDP
- Obtain optimal solution X^*:
The NCAA Football Network, pt 4

- Solve instance of KDC with $W = A$, $k = 15$.
 - Use ADMM to solve the SDP
- Obtain optimal solution X^*:
The NCAA Football Network, pt 5

Atlantic Coast
- Clemson
- Duke
- Florida State
- Georgia Tech
- Maryland
- NC State
- North Carolina
- Virginia
- Wake Forest

Big East
- Boston College
- Miami
- Pittsburgh
- Rutgers
- Syracuse
- Temple
- Virginia Tech
- West Virginia

Big Ten
- Illinois
- Indiana
- Iowa
- Michigan
- Michigan State
- Minnesota
- Northwestern
- Ohio State
- Penn State
- Purdue
- Wisconsin

Big Twelve 1
- Colorado
- Kansas
- Kansas State
- Iowa State
- Missouri
- Nebraska

Big Twelve 2
- Oklahoma State
- Oklahoma
- Texas Tech
- Baylor
- Texas A&M
- Texas

Conference USA
- Alabama-Birm
- Army
- Cincinnati
- East Carolina
- Houston
- Louisville
- Memphis
- So. Miss.
- Tulane

MAC West
- Ball State
- C. Michigan
- E. Michigan
- N. Illinois
- Toledo
- W. Michigan

MAC East
- Akron
- BGSU
- Buffalo
- Kent
- Marshall
- Miami Ohio
- Ohio

Mountain West
- Air Force
- BYU
- Colorado St
- New Mexico
- SDSU
- UNLV
- Utah
- Wyoming

Pacific Ten
- Arizona
- Arizona State
- California
- Oregon
- Oregon State
- Stanford
- UCLA
- USC
- Washington
- WSU

SEC West
- Alabama
- Arkansas
- Auburn
- LSU
- Miss St
- Mississippi

SEC East
- Florida
- Georgia
- Kentucky
- South Carolina
- Tennessee
- Vanderbilt

Sun Belt 1
- Arkansas State
- Boise State*
- Idaho
- NMSU
- North Texas
- Utah State*

Sun Belt 2
- Central Florida*
- L-Lafayette
- L-Monroe
- Louisiana Tech*
- MTSU

Western Athletic
- Fresno St
- Hawaii
- Nevada
- Rice
- SJSU
- SMU
- Texas Christian*
- Texas El Paso
- Tulsa

Independents
- Navy
- Notre Dame
Conclusions

- Have presented new convex relaxation based heuristics for the maximum clique and graph clustering problems.

- These relaxations are based on the relationship between cliques and low-rank submatrices of the adjacency graph, and the nuclear norm relaxation for rank minimization.

- If data is sufficiently clusterable (i.e. highly similar within clusters, dissimilar across clusters) then these heuristics successfully recover the correct partition of the data.
Open problems

- Overlapping communities?
- Sparse graphs? Can we improve recovery guarantees?
 - Sparse in the sense that $\alpha > \beta$ are both tending to 0 as $N \to \infty$
- How to choose k in the clustering SDP?
- Algorithmic issues: how to efficiently solve large-scale SDP?
Thank you!

- Papers/talk slides: ima.umn.edu/~bpames
- Matlab code available upon request.