
Non-convex relaxations for the densest
submatrix problem

Brendan Ames

Department of Mathematics
The University of Alabama

UA Applied Math Seminar

Friday August 26, 2022

Agenda

Consider convex and non-convex relaxations for the maximum
clique and densest submatrix problems.

Give a probabilistic model for ‘‘clusterable’’ data and graphs, and
theoretical recovery guarantees.

Propose efficient first-order methods for solving these relaxations.

Joint work with Polina Bombina, UA.

Clustering

Clustering: partition data so that items in each cluster are similar
to each other and items not in the same cluster are dissimilar.

Fundamental problem in statistics and machine learning:

• pattern recognition, computational biology, image
processing/computer vison, network analysis.

No consensus on what constitutes a good clustering; depends
heavily on application.

Intractable: usually modeled as some NP-hard problem (e.g.,
clique, normalized cut, k-means).

A sanity check

Clustering seems to be a very difficult/ill-posed problem.

Many heuristics seem to work well in practice.

Question: can we show that we can cluster “clusterable” data?
How do we model clusterable data?

Cliques of a graph

Given graph G = (V ,E), a clique of G is a pairwise adjacent
subset of V .

The vertex set C ⊆ V is a clique of G if uv ∈ E for all u, v ∈ C .

The subgraph G (C) induced by C is complete.

Cliques of a graph

Given graph G = (V ,E), a clique of G is a pairwise adjacent
subset of V .

The vertex set C ⊆ V is a clique of G if uv ∈ E for all u, v ∈ C .

The subgraph G (C) induced by C is complete.

The Clique problem

Optimization version: Find the clique of G of maximum size.
Size of the largest clique is the clique number ω(G).

Decision version: Given graph G , integer k: does G contain a
clique of cardinality at least k .

Complexity: NP-complete, cannot approximate within a ratio of
N1−ϵ for any ϵ > 0.

Many applications: communication, biological, and social
networks. Find large group of related objects.

The planted case

Hardness results are worst case.

There should be instances we should be able to solve efficiently.

In particular, if G has a clique of size k, we should be able to find
it if k is large.

Alon et al. 1998, Feige and Krauthgamer 2000, Ames and
Vavasis 2011: if k ≥ Ω(

√
N) and all other edges are added

independently at random then we can find the maximum clique in
polynomial time.

A more general model?

These recovery guarantees rely heavily on the fact that G is an
undirected graph:

• e.g., symmetry of AG , the fact that a stable set of Ḡ is a
clique of G , etc.

Would like an approach that translates to finding other
“clique-like” objects with minimal effort.

e.g., the maximum biclique of a bipartite graph, fully dense block
in a matrix.

Example: Community Detection in Social Networks

NCAA forms a social network. Schools are ‘‘friends’’ if football
teams play each other at least once (here in Fall 2000).

A random selection of teams should be unstructured (left), but the
network does contain community structure via athletic conferences
(right).

Example: Community Detection in Social Networks

NCAA forms a social network. Schools are ‘‘friends’’ if football
teams play each other at least once (here in Fall 2000).

A random selection of teams should be unstructured (left), but the
network does contain community structure via athletic conferences
(right).

Cliques and low-rank matrices

Every clique C (with characteristic vector v) of the graph
G = (V ,E) defines a rank-one matrix by X = vvT .

Moreover, nonzero entries of X form a |C | × |C | rank-one block in
AG + I .

Clique as rank minimization

G has a clique of cardinality at least k if and only if there exists
rank-one symmetric binary matrix X such that∑∑

xij ≥ k2

Xij = 0 ∀ ij /∈ E , i ̸= j .

Otherwise ω(G) < k.

Therefore Clique is equivalent to the rank minimization problem:

min
X∈{0,1}V×V

X∈ΣV

{
rank(X) : eTXe ≥ k2, xij = 0 if (i , j) ∈ Ẽ

}

where Ẽ = V × V −
{
E ∪ {(u, u) : u ∈ V }

}
.

Rank minimization

Affine rank minimization problem: find matrix with minimum
rank satisfying linear constraints:

min{rank(X) : A(X) = b}.

Well-known to be NP-hard.

Relax rank(X) with nuclear norm ∥X∥∗ = σ1(X) + · · ·+ σN(X) :

rank(X) = cardσ(X), ∥X∥∗ = ∥σ(X)∥1.

If A satisfies certain “niceness” conditions then the minimum
nuclear norm solution is the minimum rank solution.

The densest (m,n)-submatrix problem

We want to find a dense k × k submatrix in AG + I , not
necessarily a clique.

Densest m × n-submatrix problem (DSM): Given a matrix
A ∈ RM×N , find submatrix with m rows and n columns with
maximum number of nonzero entries.

NP-hard: proof is by reduction to Clique; hard to approximate.

Duality of density and number of missing edges /
zero entries

Let U and V be a subsets of {1, 2, . . . ,M} and {1, 2, . . . ,N} with
characteristic vectors u and v respectively.

Introduce a new variable Y to act as a correction for entries of
X = uvT that should be 0:

yij =

{
−xij , if aij = 0

0, otherwise.

Cardinality of Y acts as a dual of density of A(U,V) :

card (A(U,V)) = mn −
M∑
i=1

N∑
j=1

yij

Formulation as sparse plus low-rank decomposition

Can formulate (DSM) as

min rankX + γ cardY
s. t. eTXe = mn

xij + yij = 0 if aij = 0

xij ∈ {0, 1}

where γ is a regularization parameter.

Relax cardY using the ℓ1-norm ∥Y ∥1, and rankX with the
nuclear norm ∥X∥∗.

Formulation as sparse plus low-rank decomposition

Can formulate (DSM) as

min ∥X∥∗ + γ∥Y ∥1
s. t. eTXe = mn

xij + yij = 0 if aij = 0

0 ≤ xij ≤ 1

where γ is a regularization parameter.

Relax cardY using the ℓ1-norm ∥Y ∥1, and rankX with the
nuclear norm ∥X∥∗.

Planted case

Start with M × N all-zeros matrix A.

Set all entries in m × n block equal to 1.

Add noise:
• Add some of the remaining potential entries with probability
p.

• Delete some entries in m × n block with probability 1− q,
q > p.

Planted case

Start with M × N all-zeros matrix A.

Set all entries in m × n block equal to 1.

Add noise:
• Add some of the remaining potential entries with probability
p.

• Delete some entries in m × n block with probability 1− q,
q > p.

Back to the SEC Example

Back to the SEC Example

Recovery Guarantee

Theorem (Bombina-Ames 2020)

Suppose that A is sampled from the planted dense
m × n-submatrix model with edge probabilities q and p.

Let (X ∗,Y ∗) denote the matrix representation of the planted
submatrix and assume m ≤ n, M ≤ N.

Then there exists constants c1, c2, c3 > 0 such that if

q − p ≥ c1max

{√
max{σ2

q, σ
2
p}

logN

m
,
logN

m

√
σ2
pN,

(logN)3/2

m

}

then (X ∗,Y ∗) is the unique optimal solution of (DSM) for
regularization parameter

γ =
t

(q − p)m
, c2 ≤ t ≤ c3

with high probability.

Example: Dense Case

Suppose that p, q are fixed or
shrink very slowly, i.e.,
p, 1− q > 1/ log k .

Then we can recover the planted
submatrix with high probability
provided that

m ≥ C
√

N logN.

Ignoring log-term, we have the
same results as before.

Sparse Graphs

In most practical examples, the following are not necessarily true:

1 m = Ω(
√
N).

2 The noise probabilities p, q are not fixed.

Example: Community Detection. In most real-world social
networks, community size does not grow as the number of users
increases. (Seems to be capped at a very small fraction of the
total population.)

Need to modify model to use sparse noise: p and/or q tend to
zero as N → ∞.

Example: Sparse Case

Suppose that noise is sparse.

Suppose q is fixed and
p ≤ logN/N.

Then we have exact recovery
w.h.p. if m ≥ C (logN)3/2

⇒ +

Proof Idea

Apply KKT conditions and SDP duality to derive conditions
ensuring optimality and uniqueness of X ∗.

Propose a choice of Lagrange multipliers corresponding to X ∗.

Use bounds on concentration of norms of random matrices to
establish that these multipliers satisfy the optimality and
uniqueness conditions (with high probability).

ADMM Approach

Introduce artificial variables Q, W , Z to obtain the equivalent
convex optimization problem

min ∥X∥∗ + γ∥Y ∥1 + 1ΩQ
(Q) + 1ΩW

(W) + 1ΩZ
(Z)

X = Y = Q, X − W = 0, X − Z = 0,

where ΩQ ,ΩW ,ΩZ denote the constraint sets

ΩQ := {Q : PÑ(Q) = 0},
ΩW := {W : eTWe = mn },
ΩZ = {Z : Zij ≤ 1 ∀(i , j) ∈ M × N },

and 1S : RM×M → {0,+∞} is the indicator function of the set

S ⊆ RM×N
(
1S(X) = 0 if X ∈ S , and +∞ otherwise

)
.

ADMM Idea

We solve using the Alternating Direction Method of
Multipliers (ADMM).

We update each primal variable by minimizing the augmented
Lagrangian in Gauss-Seidel fashion with respect to each primal
variable. Then the dual variables are updated using approximate
gradient ascent.

ADMM Update Steps

The augmented Lagrangian is given by

Lτ =∥X∥∗ + γ∥Y ∥1 + 1ΩQ
(Q) + 1ΩW

(W) + 1ΩZ
(Z)

+ tr(ΛQ(X − Y − Q)) + tr(ΛW (X − W)) + tr(ΛZ (X − Z))

+
τ

2

(
∥X − Y − Q∥2F + ∥X − W ∥2F + ∥X − Z∥2F

)
,

where τ is a regularization parameter chosen so that Lτ is strongly
convex in each primal variable.

Update Q,W and Z by projection onto each of the sets ΩQ ,ΩW

and ΩZ .

Update X and Y using proximal operators of ∥ · ∥∗ and ∥ · ∥1
respectively.

The Algorithm

while convergence==0 % Repeat until converged.

% Update Q. Project onto support of A.

Q = (X - Y + mu*LambdaQ).*A;

% Update X by singular value shrinkage.

X = mat_shrink(1/3*(Y + Q + Z + W

- mu*(LambdaQ + LambdaW + LambdaZ)), 1/(3*tau));

% Update Y as projection of residual onto nonnegative cone.

Y = max(X-Q-gamma*ones(M,N)*mu + LambdaQ*mu, zeros(M,N));

% Scale/shift W so that entries sum to m*n.

newW = X + mu*LambdaW;

alfa = (m*n-sum(newW(:)))/(M*N);

W = newW + alfa*ones(M,N);

% Update Z.

Z = X+ mu*LambdaZ; Z = min(max(Z,0),1);

% Update dual variables by approximate gradient ascent.

LambdaQ = LambdaQ + tau*(X-Y-Q);

LambdaW = LambdaW + tau*(X-W);

LambdaZ = LambdaZ + tau*(X-Z);

end

A Problem

ADMM algorithm requires O(N3) floating point operations for
singular value decomposition each iteration; algorithm converges
linearly.

Cannot solve large-scale problem instances.

Limited to graphs/matrices with N = O(1000).

Quadratic Programming Relaxation

If rankX = 1 then X = uvT ∈ RM×N for some u ∈ RM , v ∈ RN .

(DSM) can be relaxed as

min
λ

2

(
∥u∥22 + ∥v∥22

)
+ uT Āv

s. t.
∑

ui = m,
∑

vi = n

0 ≤ ui ≤ 1, 0 ≤ vi ≤ 1

This is a non-convex quadratic program in u and v .

A Translation of Recovery Guarantees

Theorem

Suppose that the nuclear norm relaxation is exact.

That is X ∗ = u∗(v∗)T , is the optimal solution for (DSM) and the
nuclear norm relaxation with regularization parameter γ.

Then (u∗, v∗) is the optimal solution of the non-convex QP
relaxation with

λ ≤ 1

2γ
min

{√
m

n
,

√
n

m

}
.

Proof Idea: Use optimality of X ∗ to establish that

λ

2

(
∥u∥22 + ∥v∥22

)
+ uT Āv ≥ λ

2

(
∥u∗∥22 + ∥v∗∥22

)
+ (u∗)T Āv∗

for every feasible u and v for this choice of γ and λ.

LADMM setup

We can write the QP relaxation as

min
λ

2
(∥u∥2 + ∥v∥2) + uT Āv + 1Ω1(x) + 1Ω2(w)

s. t. u = x , v = w ,

where

Ω1 = {x : 0 ≤ x ≤ e, xTe = m},
Ω2 = {w : 0 ≤ w ≤ e,wTe = n}.

The augmented Lagrangian is given by:

Lτ =
λ

2
(∥u∥2 + ∥v∥2) + uT Āv + 1Ω1(x) + 1Ω2(w)

+ Λ1
T (u − x) + Λ2

T (v − w) +
τ

2
(∥u − x∥2 + ∥v − w∥2)

Outline of the Algorithm

Minimization of the augmented Lagrangian with respect to each of
the artificial primal variables x and w is equivalent to projection
onto the capped simplex.

To update u, we replace uT Āv i + λ
2∥u∥

2 by

⟨u − u i , Āv i + λu i ⟩+ ℓu
2
∥u − u i∥2,

where ℓu is a regularization term.

Similarly for v : we replace uT Āv + λ
2∥v∥

2 by

⟨v − v i , ĀTu i+1 + λv i ⟩+ ℓv
2
∥v − v i∥2,

where ℓv is a regularization term.

The LADMM Algorithm

while convergence==0

%update x

y0 = u + 1/tau*Lambda_x;

x = projection(y0,m,tau);

% Update u

u = 1/(L_v+tau)*(tau*x-Lambda_x-A_bar*v+L_v*u_old-lambda*u_old);

%update w

y1 = v + 1/tau*Lambda_w;

w = projection(y1,n,tau);

% Update v

v = 1/(L_v+tau)*(tau*w-Lambda_w-A_bar'*u+L_v*v_old-lambda*v_old);

% Update dual variables

Lambda_x_old = Lambda_x;

Lambda_x = Lambda_x_old+tau*(u-k);

Lambda_w_old = Lambda_w;

Lambda_w = Lambda_w_old + tau*(v-w);

end

Remarks

The sequences of iterates {uk}, {vk}, {xk}, {wk} are convergent
if we choose regularization parameter τ and linearization
parameters ℓu, ℓv in a certain range.

The QP relaxation is degenerate (i.e., doesn’t satisfy usual
constraint qualifications) at binary feasible solutions.

Can show that there is a non-zero duality gap between the QP
relaxation and its dual for modestly large planted solutions, even
when we have perfect recovery.

In practice, method converges quickly with initial solution
u0 = e/m ∈ RM and v0 = e/n ∈ RN .

Improvement: Adaptive LADMM

Performance depends on augmented Lagrangian parameter τ .

Number of iterations and run-time increase significantly if τ is too
small or too large.

Need to automate choice of τ :

1 Residual balancing: increment/decrement τ i to tune
between primal and dual residuals.

2 Line-search to choose τ i ensuring sufficient decrease in
residual each iteration.

Empirical Trials

We randomly generate 500× 500 matrices with randomly
generated planted densest m × n submatrices according to the
planted submatrix model with

n ∈ {10, 20, 30, . . . , 250} m = 2n

p = 0.25 q ∈ {0.3, 0.4, 0.5, . . . , 1}.

We use ADMM, LADMM, and adaptive ADMM with line search
(AdaLADMM-LS) and residual balancing (AdaLADMM-RB)
with γ = 6/(q − p)n and λ = (q − p)n/10.

Augmented Lagrangian parameters and adaptation parameters are
chosen to ensure convergence.

Stop each algorithm with stopping tolerance ϵ = 10−4 and
maximum number of iterations 2000.

Recovery Rates for Randomly Generated Matrices

Declare DSM recovered if relative error between planted solution
and calculated solution is within 10−2. Repeat 10 times.

ADMM LADMM

AdaLADMM:RB AdaLADMM:LS

Run Time

Thank you!

P. Bombina and B. Ames. Convex optimization for the densest
subgraph and densest submatrix problems. SN Operations
Research Forum. Year: 2020, Vol: 1, No: 3.
https://link.springer.com/article/10.1007/s43069-020-00020-5

Software available from bpames.people.ua.edu/software

B. Ames supported by NSF Grants #2012554 and #2108645;
UA Cyberseed Grant SP14572; University of Alabama RGC
grants RG14678 and RG14838.

P. Bombina supported by Alabama EPSCoR Graduate Research
Scholars Program.

https://link.springer.com/article/10.1007/s43069-020-00020-5
http://bpames.people.ua.edu/software.html

