Derivatives of eigenvalue functions

Brendan Ames

Institute for Mathematics and its Applications
University of Minnesota

IMA Postdoc seminar
Tuesday, December 13, 2011
Motivation

- Optimization problems involving eigenvalues are ubiquitous.
 - Semidefinite programming.
 - Graph partitioning and spectral clustering.
 - Sparse optimization (especially rank minimization and its nuclear norm relaxation).
 - Choosing preconditioners in numerical analysis.
 - Quantum mechanics.

- Most algorithms need derivatives (at least (sub)gradient, maybe Hessian).

- Want formulas for derivatives of functions of eigenvalues.
Big Question

- Given a symmetric map \(A(t) \) that depends smoothly on parameter \(t \).
- How much of this smoothness is transferred to \(\lambda_m(A(t)) \)?
• Given a symmetric map $A(t)$ that depends smoothly on parameter t.
• How much of this smoothness is transferred to $\lambda_m(A(t))$?

• Given a map $F(X)$ that depends smoothly on $\lambda(X)$.
 • i.e. $F(X) = G(\lambda(X))$ for some smooth function G.
• How much of the smoothness of G is inherited by F?
1. Eigenvalues of maps
2. Maps of eigenvalues
1. Eigenvalues of maps

2. Maps of eigenvalues
Eigenvalues recap

• Given square matrix $A \in \mathbb{R}^{n \times n}$, the scalar $\lambda \in \mathbb{C}$ is an eigenvalue if there exists $v \neq 0 \in \mathbb{R}^n$ such that

$$Av = \lambda v$$

• The eigenvalues of A are the roots of the characteristic polynomial $\text{det}(A - \lambda I)$.

• The map $A \mapsto \lambda(A)$ is continuous.
Symmetric matrices

- A matrix A is symmetric if $A = A^T$.
- Symmetric matrices have real eigenvalues.
- There exists orthogonal $U \in \mathbb{R}^{n \times n}$ such that
 \[A = U(Diag \lambda(A))U^T. \]
- Can assume that the entries of $\lambda(A)$ are in nonincreasing order:
 \[\lambda_1 = \lambda_2 = \cdots = \lambda_{k_1} > \lambda_{k_1+1} = \cdots = \lambda_{k_2} > \cdots = \lambda_{k_r}, \]
 i.e. A has r blocks of repeated eigenvalues, indexed by $I_\ell = \{ k_{\ell-1} + 1, \ldots, k_\ell \}, \ell = 1, \ldots, r.$
(Non) smoothness of $\lambda(A(t))$

- Consider the symmetric map $A(t) = \begin{pmatrix} 0 & t \\ -t & 0 \end{pmatrix}$.

- $A(t)$ has eigenvalues $\lambda_1(A(t)) = |t|, \lambda_2(A(t)) = -|t|$.

- The map $t \mapsto \lambda(A(t))$ is not differentiable at $t = 0$.
(Non) smoothness of $\lambda(A(t))$

- Consider the symmetric map $A(t) = \begin{pmatrix} 0 & t \\ -t & 0 \end{pmatrix}$.
- $A(t)$ has eigenvalues $\lambda_1(A(t)) = |t|, \lambda_2(A(t)) = -|t|$.

- The map $t \mapsto \lambda(A(t))$ is not differentiable at $t = 0$.

\[
\text{Graph showing the behavior of } \lambda(A(t)) \text{ at } t = 0.
\]
What goes wrong?

- At $t = 0$, the multiplicity of the eigenvalues jump from 1 to 2.

- Rellich 1953: if $A(t)$ is differentiable, then there are differentiable functions $\{\mu_1(t), \ldots, \mu_n(t)\}$ containing all eigenvalues of $A(t)$.

- Kato 1976: if $A(t)$ is analytic, then the $\mu_i(t)$ are analytic.

- In a neighbourhood of t where $A(t)$ has repeated eigenvalues, the roles of the $\mu_i(t)$ as eigenvalues of $A(t)$ are not well-defined.
Distinct Eigenvalues

- If $\lambda_m(A(t^*)) = \lambda_m(A)$ is simple then $\lambda_m(A(t))$ is smooth in a neighbourhood of t^* if $A(t)$ is smooth:

$$
\lambda_m(A + tE) = \lambda_m(A) + \sum_{k=1}^{\infty} \lambda_m^{(k)}(A, E)t^k.
$$

- Kato 1976 / Ames & Sendov 2011: if $\lambda_m(A)$ is simple then

$$
\lambda_m^{(k+1)}(A, E) = -\frac{1}{k+1} \sum_{\nu_1+\cdots+\nu_{k+1}=k, \nu_1, \ldots, \nu_{k+1} \geq 0} \text{Tr}(\tilde{E}\tilde{A}^{\nu_1} \cdots \tilde{E}\tilde{A}^{\nu_{k+1}})
$$

where $\tilde{E} = U^T EU$ and

$$
\tilde{A}^k = \begin{cases}
-\pi(A) & \text{if } k = 0, \\
((\lambda_m(A)I - A)\dagger)^{k} & \text{if } k \geq 1.
\end{cases}
$$
How to proceed?

- At best, we can hope for one-sided expansions of $\lambda_m(A(t))$:
 \[\lambda_m(A(t)) = a_0 + a_1 t + a_2 t^2 + \cdots \]
 for all $t \in [0, \epsilon)$.

- To get this expansion, will have to use generalized derivatives.
Directional derivatives

- A function f is **differentiable** at x in direction d if the limit

$$\nabla f(x, d) := \lim_{t \downarrow 0} \frac{f(x + td) - f(x)}{t}$$

exists.

- If $\nabla f(x, d)$ exists for all x, d say that f is **directionally differentiable**.

- Positively homogeneous in d: $\nabla f(x, \alpha d) = \alpha \nabla f(x, d)$.

- Convex functions are directionally differentiable on the interior of their domains.
“Convexity” of λ_m

- $\lambda_1(A)$ is a convex function of A.
- $\lambda_n(A)$ is a concave function of A.
- Why? by Rayleigh’s formula

$$
\lambda_1(A) = \max_{\|x\|=1} \langle Ax, x \rangle = \max_{\|x\|=1} \text{Tr}(Axx^T)
$$

So λ_1 is the support function of $\text{conv}\{xx^T : \|x\| = 1\}$

- Support of a convex set is a convex function.
- So λ_1 is convex.
“Convexity” of λ_m

- **Ky Fan**: can extend Rayleigh’s formula to sum of m largest eigenvalues:

 $$\sigma_m(A) = \sum_{i=1}^{m} \lambda_i(A) = \max \left\{ \text{Tr}(AXX^T) : X \in \mathbb{R}^{n \times m}, X^TX = I_m \right\}$$

- σ_m is the support of $\text{conv}\{XX^T : X \in \mathbb{R}^{n \times m}, X^TX = I_m \}$

- So σ_m is convex and positively homogeneous.

- So σ_m is directionally differentiable!
Directional derivatives of λ_m

- **Hiriart-Urruty & Ye 1993:** λ_m is directionally differentiable since $\nabla \lambda_m(A, E) = \nabla \sigma_m(A, E) - \nabla \sigma_{m-1}(A, E)$ for all $A, E \in \Sigma^n$.

- Suppose that $A = U(Diag \lambda(A))U^T$ has r blocks of repeated eigenvalues indexed by I_1, \ldots, I_r. Suppose that $m \in I_\ell$. Then

 $$\nabla \lambda_m(A, E) = \lambda_{m_1}(U_\ell^T EU_\ell),$$

 where $m_1 = m - k_{\ell-1}$, U_ℓ is the matrix of columns of U indexed by I_ℓ.

- Have first order expansion

 $$\lambda_m(A + tE) = \lambda_m(A) + t\lambda_{m_1}(U_\ell^T EU_\ell) + o(t).$$
Second order expansion of λ and beyond

- **Torki 2001**: can write $U_\ell^T EU_\ell + o(1)$ as

$$U_\ell^T EU_\ell + tE_1 + o(t)$$

for all sufficiently small $t > 0$.

- Can take directional derivative of $\lambda_{m_1}(A_1 + tE_1)$ to get the second order directional derivative

$$\nabla^2 \lambda_m(A, E) = \lim_{t \downarrow 0} \frac{\lambda_m(A + tE) - \lambda_m(A) - t\nabla \lambda_m(A, E)}{t^2}$$

$$= \lambda_{m_2} \left((U_1)^T \left(\underbrace{U_\ell^T E(\lambda_m(A)I - A)^\dagger EU_\ell}_{= E_1} \right) (U_1)_\ell \right).$$
Second order expansion of λ and beyond

- **Ames & Sendov 2010**: can continue this process to get an inductive formula for each coefficient of the (directional) series expansion:

$$
\lambda_m(A + tE) = \lambda_m(A) + \sum_{k=1}^{\infty} t^k \nabla^k \lambda_m(A, E)
$$

$$
= \lambda_m(A) + t\lambda_{m_1}(A_1) + t^2\lambda_{m_2}(A_2) + \cdots + t^K \lambda_{m_K}(A_K) + \cdots
$$
Outline

1. Eigenvalues of maps
2. Maps of eigenvalues
Eigenvalue functions

- We are interested in maps from Σ^n that depend only on the eigenvalues/eigenvectors of the input matrix.

- Two main examples:
 1. spectral functions
 2. primary matrix functions.
Spectral functions

- A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is symmetric if $f(x) = f(Px)$ for all x and permutation matrix P.

- A function $F : \Sigma^n \rightarrow \mathbb{R}$ is a spectral function if there exists symmetric function g such that

$$F(A) = g(\lambda(A)) = g \circ \lambda(A).$$

- Examples:

$$det(A) = \prod_i \lambda_i(A), \quad \|A\|_2 = \max_i |\lambda_i(A)|, \quad Tr(A) = \sum \lambda_i(A),$$

$$logdet(A) = \log \prod_i \lambda_i(A) = \sum_i \log(\lambda_i(A))$$
Differentiability of spectral functions

- **Lewis 1994**: The spectral function $F = g \circ \lambda$ is differentiable at the matrix A if and only if g is differentiable at the vector $\lambda(A)$.

- In this case,

$$\nabla F(A) = U(\text{Diag} \nabla g(\lambda(A)))U^T$$

for any orthogonal U such that $A = U(\text{Diag} \lambda(A))U^T$.
Examples

- For any $A \in \Sigma^n$

$$\nabla \text{Tr}(A) = U(\text{Diag} \nabla (\lambda_1 + \cdots + \lambda_n))U^T = U(\text{Diag } e)U^T = I.$$
Examples

- For any $A \in \Sigma^n$

 $$\nabla \text{Tr}(A) = U(\text{Diag} \, \nabla (\lambda_1 + \cdots + \lambda_n)) U^T = U(\text{Diag} \, e) U^T = I.$$

- For any positive definite matrix $A \in \Sigma^n_{++}$

 $$\nabla \log\det(A) = U \begin{pmatrix} 1/\lambda_1 & \cdots & \cdots \\ \cdots & \cdots & \cdots \\ \cdots & \cdots & 1/\lambda_n \end{pmatrix} U^T = A^{-1}.$$
Proof idea

• If g is differentiable at $\lambda(A)$, can use the first order expansion of g and λ to get

$$g(\lambda(A + E)) = g(\lambda(A) + \nabla \lambda(A, E) + o(\|E\|))$$

$$= g(\lambda(A)) + \nabla g(\lambda(A))^T \nabla \lambda(A, E) + o(\|E\|)$$

for all E close to 0.

• Then can use special structure of $\nabla g(\lambda(A))$ to show that

$$\nabla g(\lambda(A))^T \nabla \lambda(A, E) = Tr(\nabla F(A)E) + o(\|E\|)$$

for all E close to 0.
Higher order derivatives of spectral functions

- **Lewis & Sendov 2000:** $F = g \circ \lambda$ is twice differentiable at A if and only if g is twice differentiable at $\lambda(A)$.

- **Sendov 2007:** if A has distinct eigenvalues or g is separable, the spectral function $F = g \circ \lambda$ is k times differentiable at A if and only if g is k times differentiable at $\lambda(A)$.
Primary matrix functions

- $F : \Sigma^n \rightarrow \Sigma^n$ is a primary matrix function if there exists $g : \mathbb{R} \rightarrow \mathbb{R}$ such that

$$F(A) = U \begin{pmatrix} g(\lambda_1) & & \\ & g(\lambda_2) & \\ & & \ddots \\ & & & g(\lambda_n) \end{pmatrix} U^T$$

- Examples:

$$\sqrt{A} = U\left(Diag\left(\sqrt{\lambda_1}, \ldots, \sqrt{\lambda_n}\right)\right) U^T,$$

$$\exp(A) = U\left(Diag\left(e^{\lambda_1}, \ldots, e^{\lambda_n}\right)\right) U^T$$
Differentiability of PMFs

- Daleckii & Krein 1951: F is differentiable at A if g is differentiable at $\lambda_i(A)$ for all $i = 1, \ldots, n$.

- In this case,

$$\nabla F(A, E) = U\left(D(\lambda) \circ (U^T EU)\right)U^T$$

where \circ is the matrix Hadamard product, and $D(\lambda)$ is the matrix of divided differences

$$[D(\lambda)]_{ij} = \begin{cases}
\frac{g(\lambda_i) - g(\lambda_j)}{\lambda_i - \lambda_j} & \text{if } \lambda_i \neq \lambda_j, \\
\nabla g(\lambda_i) & \text{if } \lambda_i = \lambda_j.
\end{cases}$$
The \textbf{k-th compound matrix} of $A \in \mathbb{R}^{m \times n}$ is the matrix $A^{(k)} \in \mathbb{R}^{\binom{m}{k} \times \binom{n}{k}}$ defined by

$$[A^{(k)}]_{\rho,\tau} = \det(A_{\rho\tau})$$

for all $\rho \in \mathbb{N}_{m,k}, \tau \in \mathbb{N}_{n,k}$.

Sometimes called \textbf{k-th Grassman power} or \textbf{k-th exterior power}.

\begin{itemize}
\item The \textbf{k-th compound matrix} of $A \in \mathbb{R}^{m \times n}$ is the matrix $A^{(k)} \in \mathbb{R}^{\binom{m}{k} \times \binom{n}{k}}$ defined by

$$[A^{(k)}]_{\rho,\tau} = \det(A_{\rho\tau})$$

for all $\rho \in \mathbb{N}_{m,k}, \tau \in \mathbb{N}_{n,k}$.

\item Sometimes called \textbf{k-th Grassman power} or \textbf{k-th exterior power}.
\end{itemize}
Compound matrix facts

- \((AB)^{(k)} = A^{(k)}B^{(k)}\)
- \(A^{(k)} = (U(\text{Diag } \lambda)U^T)^{(k)} = U^{(k)}(\text{Diag } \lambda)^{(k)}(U^{(k)})^T\)
- \(\lambda_\rho(A^{(k)}) = \prod_{i \in \rho} \lambda_i(A)\)
- If \(A\) is nonsingular / positive semidefinite / orthogonal / etc, then so is \(A^{(k)}\).
Compound matrix functions

- $F : \Sigma^n \rightarrow \Sigma^{\binom{n}{k}}$ is a compound matrix function if there exists symmetric function $g : \mathbb{R}^k \rightarrow \mathbb{R}$ such that

$$F(A) = U^{(k)}(\text{Diag}(g([\lambda(A)_{\rho}])))(U^{(k)})^T$$

for all $A \in \Sigma^n$.
Special cases

- $k = n$: have spectral function
 \[F(A) = g(\lambda(A)) \]

- $k = 1$: have primary matrix function
 \[F(A) = U(\text{Diag } g(\lambda_i(A)))U^T. \]
Open Problem

- Know that F is differentiable at A if g is differentiable at $\lambda(A)$ for $k = 1$ and $k = n$.

- Is this true for all choices of k?