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Motivation

Artificial Intelligence is the New Electricity - Andrew Ng

Machine Learning is the New Alchemy - Ali Rahimi and Ben
Recht



Agenda

Present a semidefinite relaxation for the graph clustering problem
based on decomposition of graph into union of disjoint subgraphs.

Give a probabilistic model for ‘‘clusterable’’ data and graphs, and
theoretical recovery guarantees.

Open problems and current research.

Joint with Polina Bombina (UA) and Aleksis Pirinen (RISE
Research Institutes of Sweden).

Supported by NSF Grants #2012554 and #2108645; UA
Cyberseed Grant SP14572; University of Alabama RGC grants
RG14678 and RG14838.



Clustering

Clustering: partition data so that items in each cluster are similar
to each other and items not in the same cluster are dissimilar.

Fundamental problem in statistics and machine learning:

• pattern recognition, computational biology, image
processing/computer vison, network analysis.

No consensus on what constitutes a good clustering; depends
heavily on application.

Intractable: usually modeled as some NP-hard problem (e.g.,
clique, normalized cut, k-means).



A sanity check

Clustering seems to be a very difficult/ill-posed problem.

Many heuristics seem to work well in practice.

Question: can we show that we can cluster “clusterable” data?
How do we model clusterable data?



The Weighted Similarity Graph

Given data and affinity function f indicating similarity between any
two items.

Model the data as weighted similarity graph GS = (V ,E ,W ) as
follows:

• Each item is represented by a node in V .

• We add an edge between each pair of two nodes i , j with edge
weight wij = f (i , j) ∈ [0, 1].

• wij is large if i and j are highly similar.



Example: Rehnquist Supreme Court

Data drawn from U.S. Supreme Court decisions (from 1994-95 to
2003-04).

First consider by Hubert and Steinley 2005.

Assign edge-weights corresponding to fraction of decisions on
which Justices agreed:

St Br Gi So Oc Ke Re Sc Th

St 1 0.62 0.66 0.63 0.33 0.36 0.25 0.14 0.15
Br 0.62 1 0.72 0.71 0.55 0.47 0.43 0.25 0.24
Gi 0.66 0.72 1 0.78 0.47 0.49 0.43 0.28 0.26
So 0.63 0.71 0.78 1 0.55 0.5 0.44 0.31 0.29
Oc 0.33 0.55 0.47 0.55 1 0.67 0.71 0.54 0.54
Ke 0.36 0.47 0.49 0.5 0.67 1 0.77 0.58 0.59
Re 0.25 0.43 0.43 0.44 0.71 0.77 1 0.66 0.68
Sc 0.14 0.25 0.28 0.31 0.54 0.58 0.66 1 0.79
Th 0.15 0.24 0.26 0.29 0.54 0.59 0.68 0.79 1



The Densest k-Disjoint Clique Problem

We want to partition the graph into cliques with heavy support.

A k-disjoint-clique subgraph of a graph G is a subgraph of G
induced by k disjoint cliques.

Densest k-disjoint-clique problem (KDC): find a
k-disjoint-clique subgraph such that the sum of the densities of the
k complete subgraphs induced by the cliques is maximized.

Density of complete subgraph induced by C :

d(C ) =
1

|C |
∑
i∈C

∑
j∈C

wij =
vTWv
vTv

where v is the characteristic vector of C .



Lifting procedure for KDC

Let {C1, . . . ,Ck} define a k-disjoint-clique subgraph with
characteristic vectors {v1, v2, . . . , vk}

Lift the k characteristic vectors {v1, v2, . . . , vk} to the rank-k
matrix variable X :

X =
k∑

i=1

v ivT
i

∥v i∥2
=

k∑
i=1

v ivT
i

|Ci |

Want to find X that maximizes

tr(WX ) =
k∑

i=1

vT
i Wv i

∥v i∥2
=

k∑
i=1

d(Ci )



Lifted solutions

Lifted solution X must satisfy:

Inlier rows sum to 1. Outlier
rows equal 0: Xe ≤ e

X is symmetric doubly
nonnegative: X ≥ 0, X ⪰ 0

rank(X ) = tr(X ) = k

plus other combinatorial
constraints



SDP Relaxation

Ignoring rank constraint and relaxing combinatorial constraints on
X gives the semidefinite program:

max tr(WX )

s. t. Xe ≤ e
tr(X ) = k

X ≥ 0, X ⪰ 0.

Question: When does the optimal solution of this relaxation
recover underlying cluster structure in similarity graph?



The Stochastic Block Model

Stochastic Block Model (SBM): generate random graph
containing k clusters of size r :

• edges within clusters are added independently with probability
p

• edges between-clusters are added with probability q < p.



Recovery Guarantees under the SBM

Chen/Xu (2014) characterize when graphs sampled from the SBM
are:

• trivial to cluster,

• easy to cluster (have polynomial-time algorithm),

• hard to cluster (via NP-hard max likelihood estimation)

• impossible to cluster (data has no meaningful cluster
structure).

An n-node graph sampled from SBM is easy to cluster if

(p − q)2

q(1− q)
= Ω

( n

r2

)
.



Example: Clustered Euclidean data

Suppose each data point in the ith cluster Ci is placed uniformly
at random in a ball centered at ci ∈ Rd .

Distance within clusters will be small compared to the distance
between clusters if centers are well-separated.

Choose wij = exp(−∥x i − x j∥2).

DOES NOT FIT STOCHASTIC BLOCK MODEL!!
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The Heterogeneous Planted Cluster Model

Assume that each node belongs to one of k clusters
C1,C2, . . . ,Ck .

For each u ∈ Ci and v ∈ Cj we sample edge weight wuv = wvu

from distribution Ωij with

E [wuv ] = µij Var[wuv ] = σ2
ij 0 ≤ wuv ≤ 1.

Weights within the same block are i.i.d., but weight might not be
identically distributed across blocks.



Rethinking the Gap Condition

In the stochastic block model, we have perfect recovery if the gap
constant γ = q − p is sufficiently large.

In the heterogeneous case, we have perfect recovery if the weak
assortativity constant

γ = min
q,s=1,2,...,k

q ̸=s

{µqq − µqs}

is sufficiently large.



The Recovery Guarantee

Theorem (Pirinen-Ames 2019)
Let σ̂ := maxq σqq and σ̃ := maxq,s σq,s .

Let r̂ denote size of the smallest planted cluster and rk+1 denote
the number of outlier nodes.

Then there exists constant c > 0 such that if

γ r̂ ≥ c max
{√

σ̃2n,
√
σ̃2r̂ log n,

√
σ̂2krk+1,√

krk+1 log n/r̂ , µk+1,k+1rk+1, log n
}
.

then we have perfect recovery with high probability.



Signal-to-noise ratio

Suppose that the edge weight is homogeneous: α = µqq, β = µqs

for all q ̸= s.
We can recover the planted clusters w.h.p. if

(α− β)2

σ̃2
= Ω

( n

r̂2

)
.

The left-hand side acts as a signal-to-noise ratio: ratio of
difference between expected edge weights to noise variance.

This agrees with/generalizes the easy regime for cluster recovery
proposed by Chen and Xu (2014), and Jalali et al. (2015).

The relaxation is mostly parameter free: SDP needs number of
clusters k but doesn’t need estimate of cluster sizes ri , gap
statistic α− β, etc., seen in similar theoretical guarantees.



Special Case: Stochastic Block Models

Suppose Ω1 and Ω2 are Bernoulli distributions with probability of
adding an edge p and q respectively (p > q) with no outliers
(rk+1 = 0).

Dense case: p, q constant (independent of n).

Have exact recovery w.h.p. if r̂ ≥ ĉ
√
n for some scalar ĉ

(depending on p, q).

Sparse case: p constant, q ≤ log n
n .

Have exact recovery w.h.p. if r̂ ≥ c̃ log n for some constant c̃.



Rehnquist Supreme Court

• Data drawn from U.S. Supreme Court decisions (from
1994-95 to 2003-04).

• First consider by Hubert and Steinley 2005.

• Assign edge-weights corresponding to fraction of decisions on
which Justices agreed:

St Br Gi So Oc Ke Re Sc Th

St 1 0.62 0.66 0.63 0.33 0.36 0.25 0.14 0.15
Br 0.62 1 0.72 0.71 0.55 0.47 0.43 0.25 0.24
Gi 0.66 0.72 1 0.78 0.47 0.49 0.43 0.28 0.26
So 0.63 0.71 0.78 1 0.55 0.5 0.44 0.31 0.29
Oc 0.33 0.55 0.47 0.55 1 0.67 0.71 0.54 0.54
Ke 0.36 0.47 0.49 0.5 0.67 1 0.77 0.58 0.59
Re 0.25 0.43 0.43 0.44 0.71 0.77 1 0.66 0.68
Sc 0.14 0.25 0.28 0.31 0.54 0.58 0.66 1 0.79
Th 0.15 0.24 0.26 0.29 0.54 0.59 0.68 0.79 1



Rehnquist Supreme Court (2)

• Solve KDC with k = 2 to get the following partition of the
Supreme court:

1: “Liberal” 2: “Conservative”

Stevens (St) O’Connor (Oc)
Breyer (Br) Kennedy (Ke)
Ginsberg (Gi) Rehnquist (Re)
Souter (So) Scalia (Sc)

Thomas (Th)



Rehnquist Supreme Court (3)

St Br Gi So Oc Ke Re Sc Th

St 1 0.62 0.66 0.63 0.33 0.36 0.25 0.14 0.15
Br 0.62 1 0.72 0.71 0.55 0.47 0.43 0.25 0.24
Gi 0.66 0.72 1 0.78 0.47 0.49 0.43 0.28 0.26
So 0.63 0.71 0.78 1 0.55 0.5 0.44 0.31 0.29
Oc 0.33 0.55 0.47 0.55 1 0.67 0.71 0.54 0.54
Ke 0.36 0.47 0.49 0.5 0.67 1 0.77 0.58 0.59
Re 0.25 0.43 0.43 0.44 0.71 0.77 1 0.66 0.68
Sc 0.14 0.25 0.28 0.31 0.54 0.58 0.66 1 0.79
Th 0.15 0.24 0.26 0.29 0.54 0.59 0.68 0.79 1



Rehnquist Supreme Court (4)

• Algorithm is sensitive to choice of k .

• Solve with k = 3:

Cluster 1 Cluster 2 Cluster 3

Thomas (Th) O’Connor (Oc) Stevens (St)
Scalia (Sc) Kennedy (Ke) Breyer (Br)

Rehnquist (Re) Ginsberg (Gi)
Souter (So)



Current projects: Generalization of SBMs

More realistic planted models are needed:

• Overlapping clusters/communities;

• Finding largest of several planted clusters, possibly
overlapping (without finding all clusters);

• Random graphs with dependent edges;

• Time-varying graphs; etc.,



Future work: Generalization to machine learning

Most machine learning algorithms are actually heuristics.

Approximately solve model problem for learning task (usually
non-convex) and use approximate solution for inference process.

Would be extremely beneficial to have better understanding of the
structure of local optima and optimization landscape of these
model problems.

• Would allow better choices of initial solutions and heuristic
parameters.

• Would encourage greater public trust in methods, more
interpretability of results/predictions, etc.



Examples: Compressed Sensing

Compressed sensing / LASSO: can find sparsest solution of
underdetermined linear system by solving convex relaxation

min{∥x∥1 : Ax = b},

where ∥x∥1 = |x1|+ |x2|+ · · ·+ |xn|, under certain assumptions
about A.

Rank minimization: can find minimum rank solution of linear
system A(X ) = b by solving

min{∥X∥∗ : A(X ) = b},

under certain assumptions about A, where ∥X∥∗ is the matrix
nuclear norm.



Example: Combinatorial Optimization

Maximum Clique Problem: Ames/Vavasis 2011 showed that the
maximum clique of graph G = (V ,E ) can be found by solving
the relaxation

min

∥X∥∗ :
∑
ij

xij = k , xij = 0 ∀ ij /∈ E


if G sampled from planted clique model. Recovery guarantee
improved in Bombina/Ames 2020.

Similar average case recovery guarantees exist for sparse PCA,
nonnegative matrix factorization, among other NP-hard
problems.



Current projects: biclustering

Given set of objects and features, biclustering or co-clustering
aims to partition both simultaneously so objects in bicluster
strongly exhibit same features.

Want to obtain groups of objects similar with respect to a
particular subset of features, while simultaneously grouping
features.

Applications:

• identifying subsets of genes exhibiting similar expression
patterns across subsets of experimental conditions in analysis
of gene expression data,

• grouping documents by topics in document clustering, and

• grouping customers according to their preferences in
collaborative filtering and recommender systems, etc.



The Biclustering SDP

Model the problem as densest k-disjoint biclique problem.

Let G = ((U,V ),E ) be a bipartite graph. Want collection of
k-densest bipartite subgraphs, corresponding to k biclusters.

max tr(WZ )

s. t. ZU,Ue ≤ e, ZV ,V e ≤ e
tr(ZU,U) = k = tr(ZV ,V )

Z ≥ 0, Z ∈ Σ
|U|+|V |
+

Ames 2014 establishes conditions for perfect recovery in dense
homogeneous case.

Would like to generalize to sparse heterogeneous case.



Current projects: Improved Numerical Methods

Current state of the art for solving clustering SDP requires O(n3)
floating point operations for singular value decomposition each
iteration; algorithm converges linearly.

Cannot solve large-scale problem instances.

Investigating intermediate relaxation via non-convex quadratic
programming (QP).

Solve QP using linearized ADMM, with much lower iteration
complexity.

• When do we have perfect recovery?

• When does our algorithm converge?



Current projects: Applied Data Analysis

Ford et al. 2021: applied novel classification algorithm to identify
comprehension of language via EEG.

SLINGSHOT: machine learning pipeline for detecting lensed
galaxies from observational telescope data.

Hyperspectral segmentation: Remote sensing (land-cover
classification), biomedical samples (malignant vs. benign cells),
geological samples (compositional/chronometric analysis)



Thank you!
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